Review of Antibacterial Activity of Titanium-Based Implants’ Surfaces Fabricated by Micro-Arc Oxidation

نویسندگان

  • Xiaojing He
  • Xiangyu Zhang
  • Lin Qin
چکیده

Ti and its alloys are the most commonly used materials for biomedical applications. However, bacterial infection after implant placement is still one of the significant rising complications. Therefore, the application of the antimicrobial agents into implant surfaces to prevent implant-associated infection has attracted lots of attentions. Scientific papers have shown that inorganic antibacterial metal elements (e.g. Ag, Cu, Zn) can be introduced into implant surfaces with the addition of metal nanoparticles or metallic compounds into electrolyte via micro-arc oxidation (MAO) technology. In this review, the effects of the composition and concentration of electrolyte and process parameters (e.g. voltage, current density, oxidation time) on morphological characteristics (e.g. surface morphology, bonding strength), antibacterial ability and biocompatibility of MAO antimicrobial coatings were discussed in detail. Anti-infection and osseointegration can be simultaneously accomplished with the selection of the proper antibacterial elements and operating parameters. Besides, MAO assisted by magnetron sputtering (MS) to endow Ti-based implant materials with superior antibacterial ability and biocompatibility was also discussed. Finally, the development trend of MAO technology in the future was forecasted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroxyapaptite Layer Formation on Titanium Alloys Surface Using Micro-arc Oxidation

In recent years, research on titanium and its alloys had increased significantly for hard tissue replacement and dental applications due to their excellent mechanical properties such as high strength to weight ratio, low density and biocompatibility. However, there are some surface originated problems associated with titanium (Ti): poor implant fixation, lack of osseoconductivity, wear and corr...

متن کامل

Antibacterial titanium nano-patterned arrays inspired by dragonfly wings

Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the pa...

متن کامل

n-SiO2 Embedded HA/TiO2 Composite Coatings Deposited on Pure Titanium Substrate by Micro-Arc Oxidation

As orthopaedic and dental metallic implant materials, titanium and titanium alloys are widely used due to their relatively low modulus, good fracture toughness, excellent strenthto-weight ration, and superior biocompatibility and corrosion resistance (Long and Rack, 1998). They have become the first choice above all other candidate metallic implant materials such as Co-Cr-Mo alloys, stainless s...

متن کامل

Ti-Based Biomedical Material Modified with TiOx/TiNx Duplex Bioactivity Film via Micro-Arc Oxidation and Nitrogen Ion Implantation

Titanium (Ti) and Ti-based alloy are widely used in the biomedical field owing to their excellent mechanical compatibility and biocompatibility. However, the bioinert bioactivity and biotribological properties of titanium limit its clinical application in implants. In order to improve the biocompatibility of titanium, we modified its surface with TiOx/TiNx duplex composite films using a new met...

متن کامل

Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017